

Subscriber access provided by American Chemical Society

View the Full Text HTML

Journal of the American Chemical Society is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036

Published on Web 04/26/2007

Rapid Removal of *D*_{5*h*} Isomer Using the "Stir and Filter Approach" and Isolation of Large Quantities of Isomerically Pure Sc₃N@C₈₀ Metallic Nitride Fullerenes

Steven Stevenson,*,[†] Mary A. Mackey,[†] Curtis E. Coumbe,[†] J. Paige Phillips,[†] Bevan Elliott,[‡] and Luis Echegoyen[‡]

Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi 39406, and Department of Chemistry, Clemson University, Clemson, South Carolina 29634

Received February 3, 2007; E-mail: steven.stevenson@usm.edu

Metallic nitride fullerenes (MNFs) are metallofullerenes with entrapped inorganic clusters.¹ These molecules consist of a fouratom trimetallic nitride cluster trapped inside a fullerene cage. A major hurdle to MNF experimentation is the poor availability of isomerically pure samples. This paucity of material is due to inefficient separation technologies.

Typical soot extracts from scandium-doped graphite rods contain the dominant empty-cage fullerenes (e.g., >90%, C_{60} , C_{70}) and a mixture of Sc₃N@C₈₀ I_h and D_{5h} structural isomers. Historically, the Sc₃N@C₈₀ mixture of isomers has been separated by HPLC,^{2,3} a tedious process, due in part, to their similar retention times. Advances in nonchromatographic techniques have included selective chemical oxidation⁴ and chemical separation methods using a reactive cyclopentadienyl (CPD) resin^{5,6} or aminosilica⁷ to immobilize fullerene contaminants on solid supports.

In this Communication, we report a rapid, nonoxidative, nonchromatographic method for the rapid removal of this contaminant D_{5h} isomer. Using a reactive diamino silica with the "stir and filter approach" (SAFA),⁷ we compare the reactivity of the D_{5h} isomer relative to the I_h Sc₃N@C₈₀ isomer and empty-cage fullerenes. Results indicate a reactivity of C₇₀, C₆₀, and D_{5h} Sc₃N@C₈₀ > I_h Sc₃N@C₈₀. Of note is the rapid (13 h) removal of D_{5h} isomer using SAFA with diamino silica. This quick removal of D_{5h} isomer is significantly shorter than the longer 2–3 week reaction time described in the CPD-resin chemical separation approach.⁶

To demonstrate the difficulty of HPLC separations for I_h and D_{5h} Sc₃N@C₈₀ isomers, Figure 1 indicates elution differences of only 92 and 95 min, respectively. There is a clear lack of baseline resolution as the D_{5h} peak is a tail of the I_h elution. To assess, for the first time, the selectivity of the D_{5h} and I_h Sc₃N@C₈₀ isomers with reactive aminosilica, a SAFA experiment was performed using diamino silica. The objective was to monitor the reactivity differences between the I_h and D_{5h} Sc₃N@C₈₀ isomers.

For this SAFA experiment, 1.1 grams of Sc fullerene extract was dissolved in *o*-xylene, and 234 g of diaminosilica was added. The slurry was stirred, and aliquots were removed for HPLC analysis of I_h and D_{5h} Sc₃N@C₈₀ isomer content. At t = 0, the extract solution contained a 72% I_h and 28% D_{5h} Sc₃N@C₈₀ isomer mixture. After only 1 h of stirring, the SAFA reaction reduced the D_{5h} content from 28% to 9%, a 3-fold decrease (Figure 2). After 4 and 8 h of SAFA reaction time, the D_{5h} content

Figure 1. Chromatogram of scandium-containing fullerene extract before and after 13 h of SAFA reaction with aminosilica. HPLC conditions are 1.0 mL/min toluene, 360 nm UV, 50 μ L injection, and PYE column.

Figure 2. Percentages of I_h and D_{5h} Sc₃N@C₈₀ isomers at various SAFA reaction times with diaminosilica.

was further reduced to 5% and 1.5% abundance, respectively. After 13 h, the D_{5h} isomer was transferred from solution to the reactive silica.

In addition to the D_{5h} Sc₃N@C₈₀ isomer, empty-cage fullerenes (e.g., C₇₀, C₇₆, C₇₈, C₈₄) have also been removed from the solution and immobilized onto the diamino silica. The composition of the 13 h aliquot is Sc₃N@C₈₀ I_h (64%) and C₆₀ (30%), with traces of Sc₃N@C₆₈ (2%) and Sc₃N@C₇₈ (4%) MNFs.

Further SAFA reaction time was required to fully remove C_{60} (1.5 days), and $Sc_3N@C_{68}$ and $Sc_3N@C_{78}$ (3.5 days). A summary of these results is shown in Figure 3.

[†] University of Southern Mississippi. [‡] Clemson University.

Figure 3. Overview of fullerene quantity remaining in solution with respect to reaction time; (inset) MALDI-TOF mass spectrum of SAFA purified I_h Sc₃N@C₈₀ isomer.

Figure 4. CV and OSWV electrochemical analysis of SAFA purified I_h Sc₃N@C₈₀ isomer.

Upon reaction completion, the slurry was filtered and washed, and the solvent was removed. From the SAFA technique, 0.112 g

of Sc₃N@C₈₀ was obtained. This sample was analyzed by mass spectrometry. MALDI-TOF data (Figure 3) indicate a sample with a fullerene purity of 99+% Sc₃N@C₈₀. Although HPLC data (Figures 1 and 2) demonstrate removal of D_{5h} isomer, further electrochemical analysis on this sample also confirms I_h isomeric purity for Sc₃N@C₈₀.

Specifically, cyclic voltammetry and Osteryoung square-wave voltammetry was performed (Figure 4) on this SAFA purified sample. OSWV data indicate oxidations for this I_h isomerically purified sample at 580 and 1090 mV. These oxidation potentials are consistent with previous literature values for $I_h \operatorname{Sc_3N@C_{80.4}}$ Note the absence of D_{5h} oxidations, which would have been observed at 310 and 650 mV, if present.

In summary, the SAFA process with diamino silica rapidly removes the D_{5h} contaminant Sc₃N@C₈₀ isomer. We also report, for the first time, purification of large quantities (>100 mg) of isomerically pure I_h Sc₃N@C₈₀ as confirmed by sensitive analytical techniques such as electrochemistry.

Acknowledgment. Prof. Stevenson thanks the NSF CAREER/ EPSCOR, Bimolecular Processes (Grant CHE-0547988), the DOE GAANN Fellowship Award No. P200A060323, and the Lucas Research Foundation for financial assistance.

Supporting Information Available: HPLC data for initial extract. This material is available free of charge via the Internet at http://pubs.acs.org.

References

- (1) Stevenson, S.; Rice, G.; Glass, T.; Harich, K.; Cromer, F.; Jordan, M. R.; Craft, J.; Hadju, E.; Bible, R.; Olmstead, M. M.; Maitra, K.; Fisher, A. J.; Balch, A. L.; Dorn, H. C. *Nature* **1999**, *401* (6748), 55-57.
- (2) Duchamp, J. C.; Demortier, A.; Fletcher, K. R.; Dorn, D.; Iezzi, E. B.; Glass, T.; Dorn, H. C. Chem. Phys. Lett. 2003, 375 (5-6), 655-659.
- (3) Krause, M.; Dunsch, L. ChemPhysChem 2004, 5 (9), 1445–1449.
- (4) Elliott, B.; Yu, L.; Echegoyen, L. J. Am. Chem. Soc. 2005, 127 (31), 10885-10888.
- (5) Ge, Z. X.; Duchamp, J. C.; Cai, T.; Gibson, H. W.; Dorn, H. C. J. Am. Chem. Soc. 2005, 127 (46), 16292–16298.
- (6) Cai, T.; Xu, L. S.; Anderson, M. R.; Ge, Z. X.; Zuo, T. M.; Wang, X. L.; Olmstead, M. M.; Balch, A. L.; Gibson, H. W.; Dorn, H. C. J. Am. Chem. Soc. 2006, 128 (26), 8581–8589.
- (7) Stevenson, S.; Harich, K.; Yu, H.; Stephen, R. R.; Heaps, D.; Coumbe, C.; Phillips, J. P. J. Am. Chem. Soc. 2006, 128 (27), 8829–8835.

JA070795A